министерство просвещения российской федерации

Министерство образования и науки Алтайского края Управление Администрации по образованию и делам молодежи Благовещенского района Алтайского края

МБОУ "Леньковская СОШ №1"

РАССМОТРЕНО школьным методическим объединением учителей естественноматематического цикла

Руководитель ШМО Карасева И.С. Протокол №1 от 29.08.2024 г.

УТВЕРЖДЕНО Директор школы ____Умрихина О.А.

Приказ №118 от 29.08.2024 г.

РАБОЧАЯ ПРОГРАММА

курса внеурочной деятельности «Познаем физику экспериментально» с использованием оборудования Центра «Точка роста»

на 2024-2025 учебный год

Уровень образования 11 классы Количество часов по программе: в 11 классе 34 часа (1 ч в неделю)

> Составитель: Ялов Александр Александрович, учитель физики

СОДЕРЖАНИЕ

- 1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
- 2. СОДЕРЖАНИЕ ОБУЧЕНИЯ
- 3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ
- 4. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
- **5.** КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ
- 6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ
- 7. ЛИСТ ВНЕСЕНИЯ ИЗМЕНЕНИЙ

1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Центры образования естественно-научной направленности «Точка роста» созданы с целью развития у обучающихся естественно-научной, математической, информационной грамотности, формирования критического и креативного мышления, совершенствования навыков естественно-научной направленности, а также для практической отработки учебного материала по учебным предметам «Физика».

Цель и задачи:

- Реализация основных общеобразовательных программ по учебным предметам естественно-научной направленности, в том числе в рамках внеурочной деятельности обучающихся;
- Разработка и реализация разноуровневых дополнительных общеобразовательных программ естественно-научной направленности, а также иных программ, в том числе в каникулярный период;
- Вовлечение учащихся в проектную деятельность.

Центр «Точка роста» предполагает развитие образовательной инфраструктуры общеобразовательной организации, в том числе оснащение общеобразовательной организации компьютерным и иным оборудованием: оборудованием, средствами обучения и воспитания для изучения (в том числе экспериментального) предметов, курсов, дисциплин (модулей) естественнонаучной направленности при реализации основных общеобразовательных программ и дополнительных общеобразовательных программ, в том числе для расширения содержания учебных предметов «Физика» оборудованием, средствами обучения и воспитания для реализации программ дополнительного образования естественно-научной направленностей.

В процессе формирования экспериментальных умений по физике учащийся учится представлять информацию об исследовании в четырёх видах:

- в вербальном: описывать эксперимент, создавать словесную модель эксперимента, фиксировать внимание на измеряемых физических величинах, терминологии;
- в табличном: заполнять таблицы данных, лежащих в основе построения графиков (при этом у учащихся возникает первичное представление о масштабах величин);
- в графическом: строить графики по табличным данным, что позволяет перейти к выдвижению гипотез о характере зависимости между физическими величинами (при этом учитель показывает преимущество в визуализации зависимостей между величинами, наглядность и многомерность);
- в аналитическом (в виде математических уравнений): приводить математическое описание взаимосвязи физических величин, математическое обобщение полученных результатов.

Цифровые лаборатории позволяют существенно экономить время, которое можно потратить на формирование исследовательских умений учащихся, выражающихся в следующих действиях:

- определение проблемы;
- постановка исследовательской задачи;
- планирование,
- решение задачи,
- выдвижение гипотез,
- построение моделей,
- экспериментальная проверка гипотез.

2. СОДЕРЖАНИЕ ОБУЧЕНИЯ

Раздел 1. «Основы исследовательской работы с использованием цифровой лаборатории RELEON»

Ознакомительное занятие. Вводный инструктаж по технике безопасности. Обзор оборудования цифровой лаборатории RELEON. Обзор программного обеспечения для работы с оборудованием цифровой лаборатории RELEON. Правила написания исследовательских работ по физике.

Раздел 2. «Изучение электромагнитной индукции и электромагнитных колебаний с использованием цифровой лаборатории RELEON»

Магнитное поле. Вектор магнитной индукции. Принцип суперпозиции магнитных полей. Линии магнитной индукции. Магнитное поле проводника с током. Картина линий индукции магнитного поля длинного прямого проводника и замкнутого кольцевого проводника, катушки с током. Взаимодействие проводников с током. Сила Ампера, её модуль и направление. Явление электромагнитной индукции. Поток вектора магнитной индукции. Электродвижущая сила индукции. Закон электромагнитной индукции Фарадея. Вихревое электрическое поле. Электродвижущая сила индукции в проводнике, движущемся поступательно в однородном магнитном поле. Правило Ленца. Индуктивность. Явление самоиндукции. Электродвижущая сила самоиндукции. Энергия магнитного поля катушки с током. Электромагнитное поле. Технические устройства и практическое применение: постоянные магниты, электромагниты, электродвигатель, ускорители элементарных частиц, индукционная печь. Колебательный контур. Свободные электромагнитные колебания в идеальном колебательном контуре. Аналогия между механическими и электромагнитными колебаниями. Формула Томсона. Закон сохранения энергии в идеальном колебательном контуре. Представление о затухающих

колебаниях. Резонанс. Вынужденные электромагнитные колебания. Переменный ток. Синусоидальный переменный ток. Мощность переменного тока. Амплитудное и действующее значение силы тока и напряжения. Трансформатор. Производство, передача и потребление электрической энергии. Экологические риски при производстве электроэнергии. Культура использования электроэнергии в повседневной жизни. Технические устройства и практическое применение: электрический звонок, генератор переменного тока, линии электропередач.

Раздел 3. «Разработка и защита проектов с использованием цифровой лаборатории RELEON»

Разработка проектов. Определение темы, цели, задач. Разработка проектов. Проведение опытных исследований. Доработка проектов. Защита проектов.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

Личностные результаты освоения учебного предмета «Физика» должны отражать готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

1) гражданского воспитания:

- сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;
- принятие традиционных общечеловеческих гуманистических и демократических ценностей;

- готовность вести совместную деятельность в интересах гражданского общества, участвовать в самоуправлении в образовательной организации;
- умение взаимодействовать с социальными институтами в соответствии с их функциями и назначением;
- готовность к гуманитарной и волонтёрской деятельности;

2) патриотического воспитания:

- сформированность российской гражданской идентичности, патриотизма;
- ценностное отношение к государственным символам, достижениям российских учёных в области физики и техники;

3) духовно-нравственного воспитания:

- сформированность нравственного сознания, этического поведения;
- способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности, в том числе в деятельности учёного;
- осознание личного вклада в построение устойчивого будущего;

4) эстетического воспитания:

• эстетическое отношение к миру, включая эстетику научного творчества, присущего физической науке;

5) трудового воспитания:

• интерес к различным сферам профессиональной деятельности, в том числе связанным с физикой и техникой, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;

• готовность и способность к образованию и самообразованию в области физики на протяжении всей жизни;

6) экологического воспитания:

- сформированность экологической культуры, осознание глобального характера экологических проблем;
- планирование и осуществление действий в окружающей среде на основе знания целей устойчивого развития человечества;
- расширение опыта деятельности экологической направленности на основе имеющихся знаний по физике;

7) ценности научного познания:

- сформированность мировоззрения, соответствующего современному уровню развития физической науки;
- осознание ценности научной деятельности, готовность в процессе изучения физики осуществлять проектную и исследовательскую деятельность индивидуально и в группе.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Познавательные универсальные учебные действия

Базовые логические действия:

- самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;
- определять цели деятельности, задавать параметры и критерии их достижения;
- выявлять закономерности и противоречия в рассматриваемых физических явлениях;
- разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;

- вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;
- координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;
- развивать креативное мышление при решении жизненных проблем.

Базовые исследовательские действия:

- владеть научной терминологией, ключевыми понятиями и методами физической науки;
- владеть навыками учебно-исследовательской и проектной деятельности в области физики, способностью и готовностью к самостоятельному поиску методов решения задач физического содержания, применению различных методов познания;
- владеть видами деятельности по получению нового знания, его интерпретации, преобразованию и применению в различных учебных ситуациях, в том числе при создании учебных проектов в области физики;
- выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;
- анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;
- ставить и формулировать собственные задачи в образовательной деятельности, в том числе при изучении физики;
- давать оценку новым ситуациям, оценивать приобретённый опыт;
- уметь переносить знания по физике в практическую область жизнедеятельности;
- уметь интегрировать знания из разных предметных областей;

- выдвигать новые идеи, предлагать оригинальные подходы и решения;
- ставить проблемы и задачи, допускающие альтернативные решения.

Работа с информацией:

- владеть навыками получения информации физического содержания из источников разных типов, самостоятельно осуществлять поиск, анализ, систематизацию и интерпретацию информации различных видов и форм представления;
- оценивать достоверность информации;
- использовать средства информационных и коммуникационных технологий в решении когнитивных, коммуникативных и организационных задач с соблюдением требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- создавать тексты физического содержания в различных форматах с учётом назначения информации и целевой аудитории, выбирая оптимальную форму представления и визуализации.

Коммуникативные универсальные учебные действия:

- осуществлять общение на уроках физики и во внеурочной деятельности;
- распознавать предпосылки конфликтных ситуаций и смягчать конфликты;
- развёрнуто и логично излагать свою точку зрения с использованием языковых средств;
- понимать и использовать преимущества командной и индивидуальной работы;
- выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;

- принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;
- оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;
- предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;
- осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

Регулятивные универсальные учебные действия

Самоорганизация:

- самостоятельно осуществлять познавательную деятельность в области физики и астрономии, выявлять проблемы, ставить и формулировать собственные задачи;
- самостоятельно составлять план решения расчётных и качественных задач, план выполнения практической работы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;
- давать оценку новым ситуациям;
- расширять рамки учебного предмета на основе личных предпочтений;
- делать осознанный выбор, аргументировать его, брать на себя ответственность за решение;
- оценивать приобретённый опыт;
- способствовать формированию и проявлению эрудиции в области физики, постоянно повышать свой образовательный и культурный уровень.

Самоконтроль, эмоциональный интеллект:

- давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;
- владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований;
- использовать приёмы рефлексии для оценки ситуации, выбора верного решения;
- уметь оценивать риски и своевременно принимать решения по их снижению;
- принимать мотивы и аргументы других при анализе результатов деятельности;
- принимать себя, понимая свои недостатки и достоинства;
- принимать мотивы и аргументы других при анализе результатов деятельности;
- признавать своё право и право других на ошибки.

В процессе достижения личностных результатов освоения программы по физике для уровня среднего общего образования у обучающихся совершенствуется эмоциональный интеллект, предполагающий сформированность:

- самосознания, включающего способность понимать своё эмоциональное состояние, видеть направления развития собственной эмоциональной сферы, быть уверенным в себе;
- саморегулирования, включающего самоконтроль, умение принимать ответственность за своё поведение, способность адаптироваться к эмоциональным изменениям и проявлять гибкость, быть открытым новому;

- внутренней мотивации, включающей стремление к достижению цели и успеху, оптимизм, инициативность, умение действовать исходя из своих возможностей;
- эмпатии, включающей способность понимать эмоциональное состояние других, учитывать его при осуществлении общения, способность к сочувствию и сопереживанию;
- социальных навыков, включающих способность выстраивать отношения с другими людьми, заботиться, проявлять интерес и разрешать конфликты.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

К концу обучения в 11 классе предметные результаты на базовом уровне должны отражать сформированность у обучающихся умений:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей, целостность и единство физической картины мира;
- распознавать физические явления (процессы) и объяснять их на основе законов электродинамики и квантовой физики: электрическая проводимость, тепловое, световое, химическое, магнитное действия тока, взаимодействие магнитов, электромагнитная индукция, действие магнитного поля на проводник с током и движущийся заряд, электромагнитные колебания и волны.
- описывать изученные свойства вещества (электрические, магнитные, электрическую проводимость различных сред) и электромагнитные явления (процессы), используя физические величины: электрический заряд, сила тока, электрическое напряжение, электрическое сопротивление, разность потенциалов, электродвижущая сила, работа тока, индукция магнитного поля, сила Ампера, индуктивность катушки, энергия электрического и магнитного полей, период и

- частота колебаний в колебательном контуре, заряд и сила тока в процессе гармонических электромагнитных колебаний.
- при описании правильно трактовать физический смысл используемых величин, их обозначения и единицы, указывать формулы, связывающие данную физическую величину с другими величинами;
- анализировать физические процессы и явления, используя физические законы и принципы: закон Ома, законы последовательного и параллельного соединения проводников, закон Джоуля—Ленца, закон электромагнитной индукции.
- выполнять эксперименты по исследованию физических явлений и процессов с использованием прямых и косвенных измерений: при этом формулировать проблему/задачу и гипотезу учебного эксперимента, собирать установку из предложенного оборудования, проводить опыт и формулировать выводы;
- осуществлять прямые и косвенные измерения физических величин, при этом выбирать оптимальный способ измерения и использовать известные методы оценки погрешностей измерений;
- исследовать зависимости физических величин с использованием прямых измерений: при этом конструировать установку, фиксировать результаты полученной зависимости физических величин в виде таблиц и графиков, делать выводы по результатам исследования;
- соблюдать правила безопасного труда при проведении исследований в рамках учебного эксперимента, учебно-исследовательской и проектной деятельности с использованием измерительных устройств и лабораторного оборудования;
- решать расчётные задачи с явно заданной физической моделью, используя физические законы и принципы, на основе анализа условия задачи выбирать физическую модель, выделять физические величины и формулы, необходимые для её решения, проводить расчёты и оценивать реальность полученного значения физической величины;

- решать качественные задачи: выстраивать логически непротиворечивую цепочку рассуждений с опорой на изученные законы, закономерности и физические явления;
- объяснять принципы действия машин, приборов и технических устройств, различать условия их безопасного использования в повседневной жизни;
- приводить примеры вклада российских и зарубежных учёных-физиков в развитие науки, в объяснение процессов окружающего мира, в развитие техники и технологий;
- работать в группе с выполнением различных социальных ролей, планировать работу группы, рационально распределять обязанности и планировать деятельность в нестандартных ситуациях, адекватно оценивать вклад каждого из участников группы в решение рассматриваемой проблемы.

4. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№ п/п	Название раздела	Кол-во часов
1	Основы исследовательской работы	3
	с использованием цифровой	
	лаборатории RELEON	
2	Изучение электромагнитной	28
	индукции и электромагнитных	
	колебаний с использованием	
	цифровой лаборатории RELEON	
3	Разработка и защита проектов с	2
	использованием цифровой	
	лаборатории RELEON	
	ИТОГО	34

5. КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

№ п/п	Тема	Кол-во часов	Дата проведения			
			план	факт		
Раздел 1. «Основы исследовательской работы с использованием						
цифровой лаборатории RELEON»						
1.	Ознакомительное занятие. Вводный	1	04.09.24			

1	1		1	
	инструктаж по технике			
безопасности. Обзор оборудования				
	цифровой лаборатории RELEON			
2.	Обзор программного обеспечения	1	11.09.24	
	для работы с оборудованием			
	цифровой лаборатории RELEON			
3.	Правила написания	1	18.09.24	
	исследовательских работ по физике.			
Разде	ел 2. «Изучение электромагнитной	индукции и	электромаг	гнитных
К	солебаний с использованием цифро	вой лаборат	ории RELE	ON»
4.	Магнитное поле проводника с	1	25.09.24	
	током.			
5.	Лабораторная работа № 1	1	02.10.24	
	Исследование магнитного поля			
	проводника с током.			
6.	Соленоид	1	09.10.24	
7.	Лабораторная работа №2 Изучение	1	16.10.24	
	магнитного поля соленоида			
8.	Самоиндукция	1	23.10.24	
9.	Лабораторная работа № 3 Изучение	1	06.11.24	
	самоиндукции при замыкании и			
	размыкании цепи			
10.	Электромагнит	1	13.11.24	
11.	Лабораторная работа № 4	1	20.11.24	
	«Демонстрация работы			
	электромагнита»			
12.	Характеристики переменного тока	1	27.11.24	
13.	Лабораторная работа № 5	1	04.12.24	
	«Измерение характеристик			
	переменного тока осциллографом»			
14.	Активное сопротивление в цепи	1	11.12.24	
	переменного тока	_		
15.	Лабораторная работа № 6	1	18.12.24	
10.	«Исследование активного	-	10.12.21	
	сопротивления в цепи переменного			
	тока»			
16.	Электроемкость в цепи переменного	1	25.12.24	
10.	тока	1	23.12.21	
17.	Лабораторная работа № 7	1	15.01.25	
11.	«Исследование электроемкости в	1		
	цепи переменного тока»			
18.	Индуктивность в цепи переменного	1	22.01.25	
10.	тока	1	22.01.23	
19.	Лабораторная работа № 8	1	29.01.25	
1/.	Taooparopilan paoora ne o	1	27.01.23	

	«Исследование индуктивности в			
	цепи переменного тока»			
20.	Последовательный резонанс	1	05.02.25	
21.	Лабораторная работа № 9	1	12.02.25	
	«Исследование последовательного			
	резонанса»			
22.	Параллельный резонанс	1	19.02.25	
23.	Лабораторная работа № 10	1	26.02.25	
	«Исследование параллельного			
	резонанса»			
24.	Диод в цепи переменного тока	1	05.03.25	
25.	Лабораторная работа № 11	1	12.03.25	
	«Исследование работы диода в цепи			
	переменного тока »			
26.	Действующее значение	1	19.03.25	
	переменного тока			
27.	Лабораторная работа № 12	1		
	«Определение действующего			
	значения переменного тока»			
28.	Затухающие колебания	1	02.04.25	
29.	Лабораторная работа № 13	1	09.04.25	
	«Изучение затухающих колебаний в			
	колебательном контуре»			
30.	Взаимоиндукция. Трансформатор.		16.04.25	
31.	Лабораторная работа № 14		23.04.25	
	«Изучение принципа работы			
	трансформатора»			
Разд	ел 3. «Разработка и защита проект		ванием ци	іфровой
	лаборатории RE	LEON»	T	
32.	Разработка проектов. Определение	1	07.05.25	
	темы, цели, задач.			
33.	Проведение опытных исследований.	1	14.05.25	
	Доработка проектов.			
34.	Защита проектов.	1	21.05.25	

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

- 1. Внеурочная деятельность школьников. Методический конструктор: пособие для учителя/ Д.В. Григорьев, П.В. Степанов. М.: Просвещение, 2011. 223 с. . (Стандарты второго поколения).
 - 2. Занимательная физика. Перельман Я.И. М. : Наука, 1972.

- 3. Хочу быть Кулибиным. Эльшанский И.И. М.: РИЦ МКД, 2002.
- 4. Физика для увлеченных. Кибальченко А.Я., Кибальченко И.А.– Ростов н/Д. : «Феникс», 2005.
- 5. Как стать ученым. Занятия по физике для старшеклассников. А.В. Хуторский, Л.Н. Хуторский, И.С. Маслов. – М. : Глобус, 2008.
- 6. Фронтальные лабораторные занятия по физике в 7-11 классах общеобразовательных учреждений: Книга для учителя./под ред. В.А. Бурова, Г.Г. Никифорова. М.: Просвещение, 1996.
- 7. Федеральный государственный образовательный стандарт [Электронный ресурс]. Режим доступа: http://standart.edu/catalog.aspx?Catalog=227 11. Сайт Министерства образования и науки Российской Федерации// официальный сайт. Режим доступа: http://минобрнауки.pф/
- 8. Методическая служба. Издательство «БИНОМ. Лаборатория знаний» [Электронный ресурс]. Режим доступа: http://metodist.lbz.ru/
 - 9. Развивающие электронные игры «Умники изучаем планету» [Электронный ресурс]. Режим доступа: http:// www.russobit-m.ru//

7. ЛИСТ ВНЕСЕНИЯ ИЗМЕНЕНИЙ

№ п/п	№ занятия	Дата проведения по плану	Фактическая дата проведения	Причина	Обоснование (дата, № приказа)
1.		·	•		
2.					
3.					
4.					
5.					
6.					
7.					
8.					
9.					
10.					